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Abstract

Sequence-to-sequence are traditionally solved
with encoder-decoder architectures. In such
architectures, encoders are generally bidirec-
tional, reading input text both left-to-right and
right-to-left. However, decoders are nearly al-
ways unidirectional, predicting output tokens
left-to-right only. BiDeT proposes a modifica-
tion to this architecture by including a bidirec-
tional decoder. It achieves significant improve-
ment on English-to-German translation and can
be applied to other sequence-to-sequence tasks
as well.

1 Introduction

Typical translation models rely on a bidirectional
encoder, followed by a unidirectional decoder to
translate sentences. The goal of this paper is to im-
plement a bidirectional decoder instead of the typi-
cal unidirectional approach to determine whether it
improves translation accuracy.

1.1 Unidirectional decoders
Unidirectional decoders are typically used in trans-
lation models in order to predict translations one
word at a time, and it does this in a left-to-right
nature. These are generated from the hidden state
of the decoder and previous words. However, these
unidirectional decoders are limited because they
are not able to account for important words that
might occur at the end of the sentence. Addition-
ally, unidirectional decoders are unable to revert on
mistakes, so if it incorrectly predicts a word in the
translation, the decoder is stuck with the result and
has to continue predicting other words based on it.

1.2 Bidirectional decoders
This is where a bidirectional decoder comes in.
Bidirectional decoders generate target sequences
by working in both directions, so the model can
take the contexts from the start and end of the sen-
tence into account. These are not typically used due

to their nature of being computationally expensive.
However, this could result in a more exhaustive un-
derstanding of a sentence’s meaning, and therefore,
more fluent translations.

2 Related Work

Research for bidirectional decoders is limited up
to this point since they are not commonly used
in translation models. There are three main ways
that bidirectional encoders have been implemented
in language translation models: Bidirectional Re-
current Neural Networks (RNNs) (Hochreiter and
Schmidhuber, 1997), Pre-trained Language Mod-
els, and Bidirectional Long-Short-Term-Memory
(LSTM) Networks (Rumelhart et al., 1986).

2.1 Bidirectional RNN

The Bidirectional RNN approach consists of uti-
lizing the Bidirectional RNN as a decoder itself
(Schuster and Paliwal, 1997). It predicts the target
sentence by starting at the center of the sentence
and moving outwards. The input to this Bidirec-
tional RNN decoder is the previously determined
target words concatenated with the source sentence
after it was passed through the bidirectional en-
coder (Smith et al., 2020). This implementation
can improve contextual understanding, provide en-
hanced flexibility, reduce exposure bias, and in-
crease performance. However, it struggles with
large output vocabularies and is computationally
expensive.

2.2 Pre-trained Bidirectional Models

The pre-trained model approach uses pre-trained
transformer-based language models, such as BERT
(Devlin et al., 2018) or GPT-2 (Radford and
Narasimhan, 2018), as a decoder. These are unique
in that they are fine-tuned on the machine transla-
tion task, and use the full context of the sentence to
generate predictions during decoding.These models



Figure 1: The BiDeT architecture
.

have reduced training time and improved perfor-
mance, but they run into issues with transferability
and decoding time.

2.3 Bidirectional LSTMs

In the bidirectional LSTM model, two separate
LSTM networks are used for the forward and back-
ward directions. The decoder input is fed into both
the forward and backward decoders and the output
is concatenated at some point in time to generate a
predicted sequence (Chalapathy et al., 2016). This
is the method performed by the model in this pa-
per. One way this method has been previously
done was by iterating through the tokens from the
left-to-right and right-to-left decoders until they
find a token that both decoders want to use for
any given word in the translation. However, this
could be problematic when both decoders desire
different tokens, and they both would have to for-
get their preferred options a find a compromising
token. This paper describes a new approach, which
concatenates the output from both the left-to-right
and right-to-left decoders and passes it through a
linear layer to generate more optimized sequences.

3 Model

BiDeT is a variant of the standard encoder-decoder
architecture. Here, we dive into its components
(shown in 1) and explain its differences from a
traditional architecture.

3.1 Encoder

In the encoder, the source text is first passed
through an embedding layer that projects from to-
ken space into embedding space (with embedding
dimension 256). These embeddings are then se-
quentially fed into a bidirectional LSTM, with hid-
den dimension 256 as well. The final hidden and
cell states are passed into the decoder.

3.2 Decoder

The decoder is our primary novel contribution. It
consists of two LSTMs, one that outputs tokens
left-to-right and another that outputs right-to-left.
These LSTMs operate independently and terminate
when they predict the end-of-sequence token.

At each timestep, the outputs of the decoder net-
works are conatenated. This concatenated output
is then passed through a linear classifier, which
projects from the target embedding space into the
output token space. The element of the logit with
greatest values corresponds to the prediction made
by the model.

3.3 UniDeT

A unidirectionally decoding translator (UniDeT) is
trained as well for reference. UniDeT also follows
the encoder-decoder architecture. Specifically, it
has the same encoder as BiDeT but only contains
one LSTM in the decoder. The outputs of this
LSTM are passed through a linear layer to produce
the final predictions.



4 Data

For testing the model, the WMT-14 dataset (Bojar
et al., 2014) was utilized. This dataset contains
translations for multiple languages that cover do-
mains such as news, web pages, and government
documents. This model was trained on the de-en,
or German to English, subset of the dataset. This
subset is the highest-rated subset for language trans-
lation according to previous research. The data was
preprocessed by creating train, validation, and test
splits. These splits contained 4.5 million, 3000, and
3003 data points respectively. Additionally, words
that appeared only once in the translations were
removed from the vocabulary in order to increase
accuracy for unknown translations.

5 Experiments

The model is trained using a GPU on Google Colab.
We use the Adam optimizer and cross entropy loss
over the output tokens, as is standard practice in
machine translation tasks. Rather than using all
4.5 million sentence pairs provided in the original
WMT14 dataset, 100,000 pairs are selected at ran-
dom for training, for the sake of timeliness. These
samples are each seen by the model exactly once
to prevent overfitting.

6 Results and Analysis

Model Type Train Val Test
UniDeT 1.369 1.543 1.656
BiDeT 1.085 1.191 1.301

Table 1: Cross entropy losses for UniDeT and BiDeT
across split dataset.

Model Type Trainable Parameters
UniDeT 30M
BiDeT 43M

Table 2: Number of trainable parameters in UniDeT and
BiDeT models.

6.1 Results

The experiment ran the corpus of 100,000 transla-
tions over both the UniDeT and BiDeT models and
calculated the cross-entropy losses of the models’
predictions. The loss for the train, test, and vali-
dation datasets are shown in Table 1. As shown,
the bidirectionally decoded translations had lower

overall cross-entropy losses compared to the unidi-
rectionally decoded translations.

6.2 Analysis

The success represented by the model follows the
theoretical expectation that bidirectional decoders
result in better translations. The model takes the
full context of the input into account when deter-
mining a translation, and that allows for more fluent
results. However, though the values are lower, this
is not truly indicative of the success of the BiDeT
model. As shown in Table 2, the BiDeT model has
around 43 million trainable parameters, whereas
the UniDeT model had around 30 million trainable
parameters. This could be the cause for the lower
cross-entropy losses because BiDeT is able to learn
more complex relationships in the data with more
trainable parameters.

7 Conclusion

We propose a modification to the standard encoder-
decoder architecture: the bidirectional decoder.
Bidirectional decoding allows the model to use
context from both sides of the output when mak-
ing predictions and makes the model less likely to
get "stuck" with bad starts. BiDeT shows promise
on the WMT-14 English-to-German dataset, with
a significant decrease in test loss. The architec-
ture can be applied on any sequence-to-sequence
task, including translation, question answering, and
summarization.
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